Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

Could someone give some examples of applications of numerical methods for solving differential equations that are relevant to a HN crowd? Also, where might I find some introductory material that teaches it well, according to the the suggestions in the OP?


I'm not sure what the HN crowd finds useful as a group, but I personally use a couple of different techniques in my work (geophysics). One of them is finite difference and finite element methods. I have a book called 'Introduction to Numerical Geodynamic Modeling' by Teras Gerya that teaches finite difference modeling of plate tectonic phenomena, particularly of 2nd order differential equations (Poisson equation and variants) that are useful in modeling heat flow, diffusion and so forth through space and time. It's a great book but written for a specialized audience. I've used finite element models a lot, and the occasional boundary element method, but never written any.

I also use Green's functions, which are equations that describe the response of a medium to an impulse (think the propagation of sound waves from a source, though I do different stuff), by using convolution.

But I think jofer is the only other geophysicist on HN so we're probably not representative. Nonetheless, a lot of HNers have a physics, classical engineering or chemistry background and use similar tools... just not to find out what happened tens of millions of years ago.


http://longnow.org/essays/richard-feynman-connection-machine...

"By the end of that summer of 1983, Richard had completed his analysis of the behavior of the router, and much to our surprise and amusement, he presented his answer in the form of a set of partial differential equations. To a physicist this may seem natural, but to a computer designer, treating a set of boolean circuits as a continuous, differentiable system is a bit strange. Feynman's router equations were in terms of variables representing continuous quantities such as "the average number of 1 bits in a message address." I was much more accustomed to seeing analysis in terms of inductive proof and case analysis than taking the derivative of "the number of 1's" with respect to time. Our discrete analysis said we needed seven buffers per chip; Feynman's equations suggested that we only needed five. We decided to play it safe and ignore Feynman.

The decision to ignore Feynman's analysis was made in September, but by next spring we were up against a wall. The chips that we had designed were slightly too big to manufacture and the only way to solve the problem was to cut the number of buffers per chip back to five. Since Feynman's equations claimed we could do this safely, his unconventional methods of analysis started looking better and better to us. We decided to go ahead and make the chips with the smaller number of buffers.

Fortunately, he was right. When we put together the chips the machine worked. The first program run on the machine in April of 1985 was Conway's game of Life."


https://www.udacity.com/course/differential-equations-in-act...

I'm sure there are others, but this is a pretty good introduction. It focuses quite a bit on numerical solutions (using python programs that are automatically graded.)




Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: