This is not going to be true for a very long time, at least so long as one's definition of "vision" is something like "low-cost passive planar high-resolution imaging sensors sensitive to the visual and IR spectrum" (I include "low-cost" on the basis that while SWIR, MWIR, and LWIR sensors do provide useful capabilities for self-driving applications, they are often equally expensive, if not much more so, than LIDARs). Camera sensors have gotten quite good, but they are still fundamentally much less capable than the human eyes plus visual cortex in terms of useful dynamic range, motion sensitivity, and depth cues - and human eyes regularly encounter driving conditions which interfere or prohibit safe driving (e.g. mist/ fog, heavy rain/snow, blowing sand/dust, low-angle sunlight at sunrise/sunset/winter). One of the best features of LIDAR is that it is either immune or much less sensitive to these phenomena at the ranges we care about for driving.
Of course, LIDAR is not without its own failings, and the ideal system really is one that combines cameras, LIDARs, and RADARs. The problem there is that building automotive RADAR with sufficient spatial resolution to reliably discriminate between stationary obstacles (e.g. a car stalled ahead) and nearby clutter (e.g. a bridge above the road) is something of an unsolved problem.
This is not going to be true for a very long time, at least so long as one's definition of "vision" is something like "low-cost passive planar high-resolution imaging sensors sensitive to the visual and IR spectrum" (I include "low-cost" on the basis that while SWIR, MWIR, and LWIR sensors do provide useful capabilities for self-driving applications, they are often equally expensive, if not much more so, than LIDARs). Camera sensors have gotten quite good, but they are still fundamentally much less capable than the human eyes plus visual cortex in terms of useful dynamic range, motion sensitivity, and depth cues - and human eyes regularly encounter driving conditions which interfere or prohibit safe driving (e.g. mist/ fog, heavy rain/snow, blowing sand/dust, low-angle sunlight at sunrise/sunset/winter). One of the best features of LIDAR is that it is either immune or much less sensitive to these phenomena at the ranges we care about for driving.
Of course, LIDAR is not without its own failings, and the ideal system really is one that combines cameras, LIDARs, and RADARs. The problem there is that building automotive RADAR with sufficient spatial resolution to reliably discriminate between stationary obstacles (e.g. a car stalled ahead) and nearby clutter (e.g. a bridge above the road) is something of an unsolved problem.